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@ Let / be an infinite set. Let {A; : i € I} be a collection of non-trivial
groups or non-trivial rings, or modules, or lattices or monoids. The

direct product P = HA,- is always big: Its cardinality is at least 2%0.
icl

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Introduction

@ Let / be an infinite set. Let {A;: i € I} be a collection of non-trivial
groups or non-trivial rings, or modules, or lattices or monoids. The
direct product P = HA,- is always big: Its cardinality is at least 2%,

iel

e George Bergman (Pacific J. Math. vol.274 (2015)) investigated
objects A (groups, rings, modules, lattices or monoids) which have
the property that every homomorphism f : P — A has its image
"small". For instance, he was considering the situation when the
ker(f) is an ultra product of the A; based on some ultra filter of
subsets of the index set /.
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Introduction

o Let / be an infinite set. Let {A; : i € I} be a collection of non-trivial
groups or non-trivial rings, or modules, or lattices or monoids. The
direct product P = HA,- is always big: Its cardinality is at least 2%,

icl

o George Bergman (Pacific J. Math. vol.274 (2015)) investigated
objects A (groups, rings, modules, lattices or monoids) which have
the property that every homomorphism f : P — A has its image
"small". For instance, he was considering the situation when the
ker(f) is an ultra product of the A; based on some ultra filter of
subsets of the index set /.

e Problem (Stated for modules): Let R be a ring with identity. Let
P = HA,- where A; = R for all j and let S = @A;, considered as
icl icl
left R-modules. Describe the left R-modules M which have the
property that every homomorphism f : S — M extends to a
homomorphism g : P — M.
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Cotorsion abelian groups

e We will try to answer this question in two cases: (i) when R = Z and
thus the Z-modules M are just the additively written abelian groups
and (ii) when R is arbitrary integral domain, by using cotorsion pairs
of classes of R-modules and homological methods.
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Cotorsion abelian groups

e We will try to answer this question in two cases: (i) when R = Z and
thus the Z-modules M are just the additively written abelian groups
and (i) when R is arbitrary integral domain, by using cotorsion pairs
of classes of R-modules and homological methods.

@ Recall, a group G is called a torsion group if every element in G has
a finite order and G is a torsion-free group if every element other
than the identity element in G has infinite order.
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Cotorsion abelian groups

e We will try to answer this question in two cases: (i) when R = Z and
thus the Z-modules M are just the additively written abelian groups
and (i) when R is arbitrary integral domain, by using cotorsion pairs
of classes of R-modules and homological methods.

@ Recall, a group G is called a torsion group if every element in G has
a finite order and G is a torsion-free group if every element other
than the identity element in G has infinite order.

o Definition: An abelian group G is called a cotorsion group if
whenever G € H and H/ G is torsion-free, then H = G @ K.
Equivalently, G is cotorsion iff G is a direct summand of H whenever
H/G = Q. (will prove later)
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Cotorsion abelian groups

e We will try to answer this question in two cases: (i) when R = Z and
thus the Z-modules M are just the additively written abelian groups
and (i) when R is arbitrary integral domain, by using cotorsion pairs
of classes of R-modules and homological methods.

@ Recall, a group G is called a torsion group if every element in G has
a finite order and G is a torsion-free group if every element other
than the identity element in G has infinite order.

o Definition: An abelian group G is called a cotorsion group if
whenever G € H and H/ G is torsion-free, then H = G @ K.
Equivalently, G is cotorsion iff G is a direct summand of H whenever
H/G = Q. (will prove later)

e Examples: (i) Any finite abelian group; (ii) ©Q or any injective
Z-module; (iii) [ [Z(p); [ ] Fa. Fn a finite group; (iv) Any abelian

p nelN
group admitting a compact group topology; (v) Homomorphic images
of pure-injective abelian groups; (vi) Z is NOT a cotorsion group.
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o History: D.K. Harrison introduced the concept of cotorsion groups:
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o History: D.K. Harrison introduced the concept of cotorsion groups:

e If T is any torsion abelian group, then Ext(Q/Z, T) is a cotorsion
abelian group. If C is any cotorsion group, then Tor(Q/Z,C) is a
torsion abelian group.
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o History: D.K. Harrison introduced the concept of cotorsion groups:

e If T is any torsion abelian group, then Ext(Q/Z, T) is a cotorsion
abelian group. If C is any cotorsion group, then Tor(Q/Z, C) is a
torsion abelian group.

@ He showed that there is a categorical equivalence between "reduced"
torsion groups and "adjusted" cotorsion groups by
T+— Ext(Q/Z, T) and C — Tor(Q/Z, C). The functors Ext
and Tor act as inverse functors on these categories:

Tor(Q/Z,Ext(Q/Z, T)) =2 T and Ext(Q/Z, Tor(Q/Z,C) = C.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Properties of P

o Let P= HZ = H < ep > be a direct product of infinite cyclic
neIN neN
(abelian) groups < e, >, where IN denotes the set {1,2,3,---}.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Properties of P

@ Let P= HZ = H < ep > be a direct product of infinite cyclic
neN neN
(abelian) groups < e, >, where N denotes the set {1,2,3,---}.

QIfD=Z&Z---DZ (finitely generated free abelian group), then
every homomorphism f : P — D satisfies f(e,) = 0 for all except
finitely many n € IN. — a Slender group
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Properties of P

@ Let P= HZ = H < ep > be a direct product of infinite cyclic
neN neN
(abelian) groups < e, >, where N denotes the set {1,2,3,---}.

QID=Z&Z---DZ (finitely generated free abelian group), then
every homomorphism f : P — D satisfies f(e,) = 0 for all except
finitely many n € IN. — a Slender group

@ Given any a € P, there is a finitely generated free direct summand D
of P such that a€ D (and P = D @ E). — Separable group.
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Properties of P

@ Let P= HZ = H < ep > be a direct product of infinite cyclic
nelN nelN

(abelian) groups < e, >, where IN denotes the set {1,2,3,---}.

QID=Z&Z---DZ (finitely generated free abelian group), then
every homomorphism f : P — D satisfies f(e,) = 0 for all except
finitely many n € IN. — a Slender group

@ Given any a € P, there is a finitely generated free direct summand D
of P such that a € D (and P = D & E). — Separable group.

@ For any non-zero subgroup A of P, P/A= B ® C, where B = P or
ZBZ---BZ (finitely generated free) and C is a cotorsion group.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Properties of P

@ Let P= HZ = H < ep > be a direct product of infinite cyclic
neN neN
(abelian) groups < e, >, where N denotes the set {1,2,3,---}.

QID=Z&Z---DZ (finitely generated free abelian group), then
every homomorphism f : P — D satisfies f(e,) = 0 for all except
finitely many n € IN. — a Slender group

@ Given any a € P, there is a finitely generated free direct summand D
of P such that a € D (and P = D & E). — Separable group.

@ For any non-zero subgroup A of P, P/A= B ® C, where B= P or
Z&Z- - BZ (finitely generated free) and C is a cotorsion group.

o REFERENCE: L. Fuchs, Abelian Groups, Springer Monographs in
Math, Springer (2015).
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The Extension Property

@ Theorem 1: Let G be an abelian group, P = H < e, > and
nelN

S = @ < e, > where < ¢, >= Z for all n. Suppose every

neN
homomorphism f : S — G extends to a homomorphism

g : P — G. Then every countable subgroup of G embeds in a
cotorsion subgroup of G.
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@ Proof: Suppose, on the contrary, G contains a countable subgroup
A ={a,:,n € N} € any cotorsion subgroup of G.
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@ Proof: Suppose, on the contrary, G contains a countable subgroup
A ={ay:,n €N} ¢ any cotorsion subgroup of G.
@ Let N = U Xy be an infinite partition of IN where | X, | = R for all
k>1
k. Then we can write S = @Sk where S, = @ < e, >.

k>1 neX
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@ Proof: Suppose, on the contrary, G contains a countable subgroup
A ={ay:,n € N} ¢ any cotorsion subgroup of G.

o Let N = UXk be an infinite partition of IN where | Xi| = Nq for all

k>1
k. Then we can write S = GBS;( where S, = @ < e, >.
k>1 neXy

@ Define a homomorphism f : S — G by f(e,) = ax for all n € X, so

f(Sk) =< ax >.
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Proof: Suppose, on the contrary, G contains a countable subgroup
A ={ay:,n € N} ¢ any cotorsion subgroup of G.
Let N = U Xy be an infinite partition of IN where | Xi| = Nq for all
k>1
k. Then we can write S = GBS;( where S, = @ < e, >.
k>1 neXy
@ Define a homomorphism f : S — G by f(e,) = ax for all n € X, so
f(Sk) =< ak >.
Claim: This f does not extend to a homomorphism g: P — G.
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Proof: Suppose, on the contrary, G contains a countable subgroup
A ={ay:,n € N} ¢ any cotorsion subgroup of G.

o Let N = UXk be an infinite partition of IN where | Xi| = Nq for all
k>1
k. Then we can write S = GBS;( where S, = @ < e, >

k>1 neXy

@ Define a homomorphism f : S — G by f(e,) = ax for all n € X, so

f(Sk) =< ak >.

Claim: This f does not extend to a homomorphism g: P — G.

@ Suppose such a g exists. Now, A< im(g) = B® C, where B~ P or
is finitely generated free and C is cotorsion (Property 3). B
supposition, A g Candsoif m: B® C — B is the coordinate
projection with ker(7t) = C, then 7t(ax) # 0 for some k. By Property
2., 1t(ak) € D, a finitely generated free summand of B. If
7' : B— D is a coordinate projection, then we have a

homomorphism /g : P 5 B& C 5 B ~ D. By Property 1.,
7t'rtg(e,) = 0 for all except finitely many n € IN. This is a
contradiction since for infinitely many e, € Xy,

'rg(e,) = ni'nif(e,) = W'm(ak) # 0. So AC C.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



A new characterization of Cotorsion abelian groups

@ Theorem 2: Let G be an abelian group. If every countable subgroup
of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.
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A new characterization of Cotorsion abelian groups

@ Theorem 2: Let G be an abelian group. If every countable subgroup
of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.
@ Proof: Suppose G € H with H/ G = Q. We wish to show that
H = G & D for some D € H. Now write the countable group
Q = {r,: n>1}. For each n, let x, € H such that x, + G = r,. If
X =<{xp:n>1} >, then G+ X = H. Consider G N X. Embed
the countable subgroup G N X in a cotorsion subgroup C of G. If
Y =C+ X, then Y/C = Q. Since C is cotorsion, Y = C @ D.
Then it is easy to see that H = G & D. This proves Theorem 2..
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A new characterization of Cotorsion abelian groups

@ Theorem 2: Let G be an abelian group. If every countable subgroup
of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.

@ Proof: Suppose G € H with H/ G = Q. We wish to show that
H = G & D for some D € H. Now write the countable group
Q = {r,: n>1}. For each n, let x, € H such that x, + G = r,. If
X =< {x,:n>1} >, then G+ X = H. Consider G N X. Embed
the countable subgroup G N X in a cotorsion subgroup C of G. If
Y =C+ X, then Y/C = Q. Since C is cotorsion, Y = C P D.
Then it is easy to see that H = G @ D. This proves Theorem 2..

e [ Justification: Now G+D =G+ C+ D = G+ X = H. Also,
GNDEGN(C+X)ND=(C+(GNX))ND=CND =0, as
(GNX)S C. SoH=G®D].
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A new characterization of Cotorsion abelian groups

@ Theorem 2: Let G be an abelian group. If every countable subgroup
of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.

@ Proof: Suppose G € H with H/ G = Q. We wish to show that
H = G & D for some D € H. Now write the countable group
Q = {r,: n>1}. For each n, let x, € H such that x, + G = r,. If
X =< {x,:n>1} >, then G+ X = H. Consider G N X. Embed
the countable subgroup G N X in a cotorsion subgroup C of G. If
Y =C+ X, then Y/C = Q. Since C is cotorsion, Y = C P D.
Then it is easy to see that H = G @ D. This proves Theorem 2..

o [ Justification: Now G+D =G+ C+ D = G+ X = H. Also,
GNDEGN(C+X)ND=(C+(GNX))ND=CND =0, as
(GNX)S C. SoH=GaD].

@ Thus for abelian groups, we have a solution to Bergman's Problem.
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A new characterization of Cotorsion abelian groups

@ Theorem 2: Let G be an abelian group. If every countable subgroup
of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.

@ Proof: Suppose G € H with H/ G = Q. We wish to show that
H = G & D for some D € H. Now write the countable group
Q = {r,: n>1}. For each n, let x, € H such that x, + G = r,. If
X =< {x,:n>1} >, then G+ X = H. Consider G N X. Embed
the countable subgroup G N X in a cotorsion subgroup C of G. If
Y =C+ X, then Y/C = Q. Since C is cotorsion, Y = C P D.
Then it is easy to see that H = G @ D. This proves Theorem 2..

o [ Justification: Now G+D =G+ C+ D = G+ X = H. Also,
GNDEGN(C+X)ND=(C+(GNX))ND=CND =0, as
(GNX)S C. SoH=GaD].

@ Thus for abelian groups, we have a solution to Bergman's Problem.

o Corollary 3: Let G be an abelian group. Every homomorphism
f:S — G extends to a homomorphism g: P — G if and only if G is
a cotorsion group.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

e Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M C N and N/M is torsion-free, then
N=Me&D.
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Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

o Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M C N and N/M is torsion-free, then
N=MaeD.

@ (ii) An R-module M is said to be a Matlis cotorsion module if,
whenever M € N and N/M = Q, then N =M & D.
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Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

o Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M C N and N/M is torsion-free, then
N=MaeD.

@ (ii) An R-module M is said to be a Matlis cotorsion module if,
whenever M € N and N/M = Q, then N =M & D.

@ (iii) An R-module M is said to be a Enochs cotorsion module if,
whenever M € N and N/M is flat, then N = M & D.
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Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

o Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M C N and N/M is torsion-free, then
N=MaeD.

@ (ii) An R-module M is said to be a Matlis cotorsion module if,
whenever M € N and N/M = Q, then N =M & D.

o (iii) An R-module M is said to be a Enochs cotorsion module if,
whenever M € N and N/M is flat, then N = M & D.

@ In general, Warfield cotorsion = > Matlis cotorsion = > Enochs
cotorsion, but the arrows cannot be reversed.
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Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

o Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M C N and N/M is torsion-free, then
N=MaeD.

@ (ii) An R-module M is said to be a Matlis cotorsion module if,
whenever M € N and N/M = Q, then N =M & D.

o (iii) An R-module M is said to be a Enochs cotorsion module if,
whenever M € N and N/M is flat, then N = M & D.

@ In general, Warfield cotorsion = > Matlis cotorsion = > Enochs
cotorsion, but the arrows cannot be reversed.

@ Our goal is to show that, under certain conditions, each of these
classes of R-modules satisfy the Bergman extension property.
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Generalization to Domains

@ Let R be an integral domain and let Q be its field of fractions.

@ The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.

o Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M C N and N/M is torsion-free, then
N=MaeD.

@ (ii) An R-module M is said to be a Matlis cotorsion module if,
whenever M € N and N/M = Q, then N =M & D.

o (iii) An R-module M is said to be a Enochs cotorsion module if,
whenever M € N and N/M is flat, then N = M & D.

@ In general, Warfield cotorsion = > Matlis cotorsion = > Enochs
cotorsion, but the arrows cannot be reversed.

@ Our goal is to show that, under certain conditions, each of these
classes of R-modules satisfy the Bergman extension property.

o First, some Homological Preliminaries:
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@ A sequence of modules and maps of the form A 1. B & Cis said to
be exact at B if im(f) = ker(g). Thus 0 — A L B exact at A
means that ker(f) = {0}. Likewise, B % C — 0 is exact at C means
that im(g) = ker(C — 0) = C. Thus if A is a submodule of B and
B/A = C we have an exact sequence 0 — A 4, B L C — 0 where |
is the inclusion map and 7 is the natural coset map.
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@ A sequence of modules and maps of the form A £, B & Cis said to
be exact at B if im(f) = ker(g). Thus 0 — A L B exact at A
means that ker(f) = {0}. Likewise, B % C — 0 is exact at C means
that im(g) = ker(C — 0) = C. Thus if A is a submodule of B and

B/A = C we have an exact sequence 0 — A — B I ¢ — 0 where i
is the inclusion map and 7 is the natural coset map.

f .
0 If0 > AL BE C— 0is an exact sequence, we call B an

. . F ! .
extension of A by C. A second extension 0 — A — B’ 5 Cc—o0is
said to be equivalent to the preceding one if there is an isomorphism
¢ : B — B’ such that the following diagram is commutative
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@ A sequence of modules and maps of the form A £, B & Cis said to
be exact at B if im(f) = ker(g). Thus 0 — A L B exact at A
means that ker(f) = {0}. Likewise, B % C — 0 is exact at C means
that im(g) = ker(C — 0) = C. Thus if A is a submodule of B and

B/A = C we have an exact sequence 0 — A — B I ¢ — 0 where i
is the inclusion map and 7 is the natural coset map.

f :
0 If0 AL B=E C—0isan exact sequence, we call B an

! !
extension of A by C. A second extension 0 — A LB &5 Cc—ois
said to be equivalent to the preceding one if there is an isomorphism
¢ : B — B’ such that the following diagram is commutative

O - A —- B — C — 0

1 l¢ |
0O - A - B — C — 0
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@ A sequence of modules and maps of the form A £, B & Cis said to
be exact at B if im(f) = ker(g). Thus 0 — A L B exact at A
means that ker(f) = {0}. Likewise, B % C — 0 is exact at C means
that im(g) = ker(C — 0) = C. Thus if A is a submodule of B and

B/A = C we have an exact sequence 0 — A — B I ¢ — 0 where i
is the inclusion map and 7 is the natural coset map.

f :
0 If0 AL B=E C—0isan exact sequence, we call B an

! !
extension of A by C. A second extension 0 — A LB &5 Cc—ois
said to be equivalent to the preceding one if there is an isomorphism
¢ : B — B’ such that the following diagram is commutative

0O — A —- B — C — 0

| ¢ |
0 - A - B —- C — 0

@ Given A and C, the set of inequivalent extensions of A by C form an
abelian group denoted by Ext}f,(C, A) whose zero element is A® C.
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o Every f: A— A’ induces a homomorphism
Exti(C, A) 4 Exth(C, A’). To see this, consider
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o Every f: A— A’ induces a homomorphism
Ext,l?(C,A) LA Ext,l?(C, A’). To see this, consider
0O - A - B —-— C — 0
° 1 f
A/
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o Every f: A— A’ induces a homomorphism
Ext,l?(C,A) LA Ext,l?(C, A’). To see this, consider
0O - A - B —-— C — 0
° | f
A/
0 - A 5 B — C = 0
o —— > L f lg [ (Pushout)
0o - A — B — C — 0
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Every f : A — A’ induces a homomorphism
Ext,l?(C,A) LA Ext,l?(C, A’). To see this, consider
0O - A —- B — C — 0
° | f
A/

0 - A L B = C = o0
o —— > | f lg I (Pushout)

0 - A —- B —- C — 0
e Here B’ is the Pushout of £,/ and is given by B = (A ® B)/D
where D = {(f(a), —i(a)) : a € A}
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o Every f: A— A’ induces a homomorphism
Ext,l?(C,A) LA Ext,l?(C, A’). To see this, consider
0O - A —- B — C — 0
° | f
A/
0> A 5 B = C = 0
o —— > | f lg I (Pushout)
0o - A —- B — C — 0
o Here B’ is the Pushout of f,/ and is given by B = (A ® B)/D
where D = {(f(a), —i(a)) : a € A}
e For a fixed C, Ext:(C, —) is a (covariant) functor from the category
M of R-modules to the category A of abelian groups.
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o Every f: A— A’ induces a homomorphism
Ext,l?(C,A) LA Ext,l?(C, A’). To see this, consider
0O - A —- B — C — 0
° L f
A/
0> A 5 B = C = 0
o —— > | f lg I (Pushout)
0o - A —- B — C — 0

o Here B’ is the Pushout of f,/ and is given by B = (A ® B)/D
where D = {(f(a), —i(a)) : a € A}

e For a fixed C, Ext:(C, —) is a (covariant) functor from the category
M of R-modules to the category A of abelian groups.

o Similarly, using a Pullback diagram, a homomorphism g : ' —C
induces a homomorphism Exth(C, A) £ Extk(C', A). For a fixed A,
Exth(—, A) is a (contravariant) functor from the category M to the
category A of abelian groups.
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@ Theorem 4: Let 0 — A B&c— 0 be an exact sequence of
R-modules.
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and

o Exth(C,X) — Exth(B,X) — Exth(A, X)
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and

o Exth(C,X) — Exth(B, X) — Exth(A X)

@ Recall, Homg(X,A) = {f| f : X — A}. Homg(X, —) and
Homg(—, A) functors from M to A.
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and

o Exth(C,X) — Exth(B, X) — Exth(A X)

@ Recall, Homg(X,A) = {f| f : X — A}. Homg(X,—) and
Homg(—, A) functors from M to A.

@ Moreover, using the Hom functor we get for any given R-module X
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and

o Exth(C,X) — Exth(B, X) — Exth(A X)

@ Recall, Homg(X,A) = {f| f : X — A}. Homg(X,—) and
Homg(—, A) functors from M to A.

@ Moreover, using the Hom functor we get for any given R-module X

o 0 — Homg(X,A) — Homg(X, B) — Homg(X, C)
Exth(X,A) — Exth(X,B) — Exth(X, C)
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and

o Exth(C,X) — Exth(B, X) — Exth(A X)

@ Recall, Homg(X,A) = {f| f : X — A}. Homg(X,—) and
Homg(—, A) functors from M to A.

@ Moreover, using the Hom functor we get for any given R-module X

e 0 — Homg(X,A) — Homg (X, B) — Homg(X, C) 2
Exth(X,A) — Exth(X, B) — Exth(X, C)

e 0 — Homg(A X) — Homg(B, X) — Homg(C,X) -
Exth(C,X) — Exth(B, X) — Exth(A, X)
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.

@ Then, for any R-module X, we obtain the following long exact
sequences:

o Exth(X,A) — Exth(X,B) — Exth(X,C) and

o Exth(C,X) — Exth(B, X) — Exth(A X)

@ Recall, Homg(X,A) = {f| f : X — A}. Homg(X,—) and
Homg(—, A) functors from M to A.

@ Moreover, using the Hom functor we get for any given R-module X

e 0 — Homg(X,A) — Homg (X, B) — Homg(X, C) 2
Exth(X,A) — Exth(X, B) — Exth(X, C)

o 0 — Homg (A, X) — Homg(B, X) — Homg(C,X)
Ext,l-(.(C,X) — Extl,l-(,(B,X) — Ext,l?(A,X)

@ Properties of Hom and Ext: HomR(EB/\/I,-, N) = HHomR(M,-, N);

icl icl

Exty(PM;, N) = [ [Extk(M;, N).

icl i€l
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o Theorem 4: Let 0 — A > B % C — 0 be an exact sequence of
R-modules.
@ Then, for any R-module X, we obtain the following long exact
sequences:
o Exth(X,A) — Exth(X,B) — Exth(X,C) and
o Exth(C,X) — Exth(B, X) — Exth(A X)
@ Recall, Homg(X,A) = {f| f : X — A}. Homg(X,—) and
Homg(—, A) functors from M to A.
@ Moreover, using the Hom functor we get for any given R-module X
e 0 — Homg(X,A) — Homg (X, B) — Homg(X, C) 2
Exth(X,A) — Exth(X, B) — Exth(X, C)
o 0 — Homg (A, X) — Homg(B, X) — Homg(C,X)
Ext,l-(.(C,X) — Extl,l-(\(B,X) — Ext,l?(A,X)
e Properties of Hom and Ext: Homg (M, N) = [ [Homg(M;, N);
icl iel
Exth (M, N) = [ [Extk(M;, N).
i€l i€l
@ An R-module M is a Matlis Cotorsion module <= Exth(Q, M) = 0.
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@ Let R be an integral domain and let Q be its field of fractions.
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@ Let R be an integral domain and let @ be its field of fractions.
@ For each infinite cardinal «, let P, = HR,-, where R; = R for all i
<K
and let S, = @R,-.

i<K
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@ Let R be an integral domain and let @ be its field of fractions.
@ For each infinite cardinal «, let P, = HR,-, where R; = R for all i
<K
and let S, = @R,-.
<K
@ We wish to describe R-modules M which have the property that every
homomorphism S, — M extends to a homomorphism P, — M.
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@ Let R be an integral domain and let @ be its field of fractions.
@ For each infinite cardinal «, let P, = HR,-, where R; = R for all i
i<x
and let S, = @R,-.
<K
@ We wish to describe R-modules M which have the property that every
homomorphism S, — M extends to a homomorphism P, — M.

@ To do this, we need to make some restrictions. We restrict to the case
when « is a "good" cardinal, that is, when 2 = «N0. Note that Ng is
a "good" cardinal, but 2% is not "good". There are arbitrarily large
"good" cardinals, e.g., any strongly limit cardinal of cofinality w.
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@ Let R be an integral domain and let @ be its field of fractions.
@ For each infinite cardinal «, let P, = HR,-, where R; = R for all i
i<x
and let S, = @R,-.
<K

@ We wish to describe R-modules M which have the property that every
homomorphism S, — M extends to a homomorphism P, — M.

@ To do this, we need to make some restrictions. We restrict to the case
when « is a "good" cardinal, that is, when 2° = x™°. Note that ¥ is
a "good" cardinal, but 2% is not "good". There are arbitrarily large
"good" cardinals, e.g., any strongly limit cardinal of cofinality w.

We also assume that |R| < «.
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@ Let R be an integral domain and let @ be its field of fractions.
@ For each infinite cardinal «, let P, = HR,-, where R; = R for all i
i<x
and let S, = @R,-.
i<x
@ We wish to describe R-modules M which have the property that every
homomorphism S, — M extends to a homomorphism P, — M.

@ To do this, we need to make some restrictions. We restrict to the case
when « is a "good" cardinal, that is, when 2° = x™°. Note that ¥ is
a "good" cardinal, but 2% is not "good". There are arbitrarily large
"good" cardinals, e.g., any strongly limit cardinal of cofinality w.

o We also assume that |R| < «.

o Let C; be the closure of S¢ in the product topology of Pk. It can be
shown that G/ S = EPHQ = EPQ
Ro 2K
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o Proposition 5: Let C be an R-module of cardinality < 2*. Then C is
a Matlis cotorsion module, that is, Exts(Q, C) = 0 if and only if
Exth (G, C) = 0.
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o Proposition 5: Let C be an R-module of cardinality < 2*. Then C is
a Matlis cotorsion module, that is, Ext:(Q, C) = 0 if and only if
Exth (G, C) = 0.

@ Proof: Consider the exact sequence 0 — S, — G — (/5S¢ — 0
where 5¢ = @R is a free R-module of rank k. Applying the

K
HomR(—, C) functor, we get the exact sequence
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o Proposition 5: Let C be an R-module of cardinality < 2*. Then C is
a Matlis cotorsion module, that is, Ext:(Q, C) = 0 if and only if
Exth (G, C) = 0.

@ Proof: Consider the exact sequence 0 — S, — G — C/S¢ — 0
where 5, = @R is a free R-module of rank k. Applying the

K
Homg(—, C) functor, we get the exact sequence

o Homg(Cy¢/Se, C) — Homg(Cy, C) — Homg(Sy, C)
Ext}?(CK/SK, C)— Ext}?(CK, C)— Ext,l?(SK, C). (%)
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o Proposition 5: Let C be an R-module of cardinality < 2*. Then C is
a Matlis cotorsion module, that is, Ext:(Q, C) = 0 if and only if
Exth (G, C) = 0.

@ Proof: Consider the exact sequence 0 — S, — G — C/S¢ — 0
where 5, = @R is a free R-module of rank k. Applying the

K
Hompg(—, C) functor, we get the exact sequence
o Homg(Ce/ Sk, C) — Homg(Cy, C) — Homg(Sx, C) >
Exth(Cyc/S¢, C) — Exth(Cy, C) — Exth(Sk, C). (%)
@ Assume Extp(Cy, C) = 0. Then we get the exact sequence
Homg (S, C) — Exth(Cc/Sc, C) — 0. So
|Homg (Sx, C)| > |Exth(Cc/ Sk, C)|. Suppose, by way of
contradiction, Exth(Q, C) # 0. Now |Homg (S, C)| =
|Hompg ( @R C)| = \HHomR (R, C)| = |HC| < (2¥)F =2%. On

the other hand since ExtR(Q C) #0,

|Extk(Ce/ Sk, C)| = |Extk (PQ. ) |—H\ExtR (Q,C)| >22". We
2}\

get a contradiction, since 2* 2 22° Thus ExtR(Q, C)=0.
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o Conversely, suppose Exth(Q, C) = 0. Then, clearly
Exth(Ce/ Sk, C) = Exth( @Q C) HExtR (Q,C) = 0. From the

exact sequence Exth(C /5 C)— ExtR(C C) — Exth(S C) =0,
we conclude that Exth(C, C) = 0.
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o Conversely, suppose Ext,l-e(Q, C) = 0. Then, clearly
Extk(Ce/ Sk, C) = Exth (P Q. C) = [ [Exth(Q, C) = 0. From the
K 2K

2
exact sequence Exth(Cc/ S, C) — Exth(Ce, C) — Exth(Sc, C) =0,
we conclude that Ext}(C, C) = 0.
@ Note: The above result holds if C is a Warfield cotorsion module.
The same proof works. It also holds when C is Enochs cotorsion, if
we further assume that Q is a flat R-module.

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George |



o Conversely, suppose Ext,l-e(Q, C) = 0. Then, clearly
Extk(Ce/ Sk, C) = Exth (P Q. C) = [ [Exth(Q, C) = 0. From the
K 2K

2
exact sequence Exth(Cc/ S, C) — Exth(Ce, C) — Exth(Sc, C) =0,
we conclude that Ext}(C, C) = 0.

@ Note: The above result holds if C is a Warfield cotorsion module.
The same proof works. It also holds when C is Enochs cotorsion, if
we further assume that @ is a flat R-module.

@ Theorem 6: Suppose C is an R-module with cardinality < 2*.
Assume further that C is Matlis cotorsion or Warfield cotorsion or
Enochs cotorsion. Then every homomorphism f : 5, — C extends to
a homomorphism g : G — C.
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o Conversely, suppose Ext,l-e(Q, C) = 0. Then, clearly
Exth(Ce/ Sk, C) = Exth(BQ. C) = [ [Exth(Q, C) = 0. From the
K 2K

2
exact sequence Exth(Cc/ S, C) — Exth(Ce, C) — Exth(Sc, C) =0,
we conclude that Ext}(C, C) = 0.

@ Note: The above result holds if C is a Warfield cotorsion module.
The same proof works. It also holds when C is Enochs cotorsion, if
we further assume that @ is a flat R-module.

@ Theorem 6: Suppose C is an R-module with cardinality < 2%.
Assume further that C is Matlis cotorsion or Warfield cotorsion or
Enochs cotorsion. Then every homomorphism f : 5, — C extends to
a homomorphism g : G, — C.

@ Proof: If C is Matlis cotorsion so that Ext}?(Q, C) =0 and so
Extt(Ce/ S, C) = Ext}\,(@Q, C)= HExt}?(Q, C)=0.

o 2
Substituting this in the equation (*), we get
Homg (Cy, C) — Homg (S, C) %, 0. This means that every
homomorphism from S to C extends to a homomorphism from C; to

C.
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o Conversely, suppose Ext,l-e(Q, C) = 0. Then, clearly

Exth(Ce/ Sk, C) = Exth(BQ. C) = [ [Exth(Q, C) = 0. From the
2K 2¢

exact sequence Exth(Cc/ Sy, C) — Exth(Cy, C) — Exth(S¢, C) =0,

we conclude that Ext}(C, C) = 0.

@ Note: The above result holds if C is a Warfield cotorsion module.
The same proof works. It also holds when C is Enochs cotorsion, if
we further assume that @ is a flat R-module.

@ Theorem 6: Suppose C is an R-module with cardinality < 2%.
Assume further that C is Matlis cotorsion or Warfield cotorsion or
Enochs cotorsion. Then every homomorphism f : 5, — C extends to
a homomorphism g : G, — C.

@ Proof: If C is Matlis cotorsion so that Ext,l;,(Q, C) =0 and so

Extk(Ce/ S C) = Exth(DQ, €) = [[Ext(Q. C) = 0.
2% 2K

Substituting this in the equation (*), we get

Homg (Cy, C) — Homg (S, C) 2, 0. This means that every
homomorphism from S, to C extends to a homomorphism from C; to

C.
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