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Introduction

Let I be an infinite set. Let {Ai : i ∈ I} be a collection of non-trivial
groups or non-trivial rings, or modules, or lattices or monoids. The
direct product P = ∏

i∈I
Ai is always big: Its cardinality is at least 2ℵ0 .

George Bergman (Pacific J. Math. vol.274 (2015)) investigated
objects A (groups, rings, modules, lattices or monoids) which have
the property that every homomorphism f : P −→ A has its image
"small". For instance, he was considering the situation when the
ker(f ) is an ultra product of the Ai based on some ultra filter of
subsets of the index set I .

Problem (Stated for modules): Let R be a ring with identity. Let
P = ∏

i∈I
Ai where Ai = R for all i and let S =

⊕
i∈I
Ai , considered as

left R-modules. Describe the left R-modules M which have the
property that every homomorphism f : S −→ M extends to a
homomorphism g : P −→ M.
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Cotorsion abelian groups

We will try to answer this question in two cases: (i) when R = Z and
thus the Z-modules M are just the additively written abelian groups
and (ii) when R is arbitrary integral domain, by using cotorsion pairs
of classes of R-modules and homological methods.

Recall, a group G is called a torsion group if every element in G has
a finite order and G is a torsion-free group if every element other
than the identity element in G has infinite order.
Definition: An abelian group G is called a cotorsion group if
whenever G j H and H/G is torsion-free, then H = G ⊕K .
Equivalently, G is cotorsion iff G is a direct summand of H whenever
H/G ∼= Q. (will prove later)
Examples: (i) Any finite abelian group; (ii) ⊕Q or any injective
Z-module; (iii) ∏

p
Z(p); ∏

n∈N

Fn, Fn a finite group; (iv) Any abelian

group admitting a compact group topology; (v) Homomorphic images
of pure-injective abelian groups; (vi) Z is NOT a cotorsion group.
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History: D.K. Harrison introduced the concept of cotorsion groups:

If T is any torsion abelian group, then Ext(Q/Z,T ) is a cotorsion
abelian group. If C is any cotorsion group, then Tor(Q/Z,C ) is a
torsion abelian group.

He showed that there is a categorical equivalence between "reduced"
torsion groups and "adjusted" cotorsion groups by
T 7−→ Ext(Q/Z,T ) and C 7−→ Tor(Q/Z,C ). The functors Ext
and Tor act as inverse functors on these categories:

Tor(Q/Z,Ext(Q/Z,T )) ∼= T and Ext(Q/Z,Tor(Q/Z,C ) ∼= C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 4

/ 15



History: D.K. Harrison introduced the concept of cotorsion groups:
If T is any torsion abelian group, then Ext(Q/Z,T ) is a cotorsion
abelian group. If C is any cotorsion group, then Tor(Q/Z,C ) is a
torsion abelian group.

He showed that there is a categorical equivalence between "reduced"
torsion groups and "adjusted" cotorsion groups by
T 7−→ Ext(Q/Z,T ) and C 7−→ Tor(Q/Z,C ). The functors Ext
and Tor act as inverse functors on these categories:

Tor(Q/Z,Ext(Q/Z,T )) ∼= T and Ext(Q/Z,Tor(Q/Z,C ) ∼= C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 4

/ 15



History: D.K. Harrison introduced the concept of cotorsion groups:
If T is any torsion abelian group, then Ext(Q/Z,T ) is a cotorsion
abelian group. If C is any cotorsion group, then Tor(Q/Z,C ) is a
torsion abelian group.

He showed that there is a categorical equivalence between "reduced"
torsion groups and "adjusted" cotorsion groups by
T 7−→ Ext(Q/Z,T ) and C 7−→ Tor(Q/Z,C ). The functors Ext
and Tor act as inverse functors on these categories:

Tor(Q/Z,Ext(Q/Z,T )) ∼= T and Ext(Q/Z,Tor(Q/Z,C ) ∼= C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 4

/ 15



Properties of P

Let P = ∏
n∈N

Z = ∏
n∈N

< en > be a direct product of infinite cyclic

(abelian) groups < en >, where N denotes the set {1, 2, 3, · · ·}.

1 If D = Z⊕Z · · · ⊕Z (finitely generated free abelian group), then
every homomorphism f : P −→ D satisfies f (en) = 0 for all except
finitely many n ∈N. – a Slender group

2 Given any a ∈ P, there is a finitely generated free direct summand D
of P such that a ∈ D (and P = D ⊕ E ). —Separable group.

3 For any non-zero subgroup A of P, P/A = B ⊕ C , where B ∼= P or
Z⊕Z · · · ⊕Z (finitely generated free) and C is a cotorsion group.

REFERENCE: L. Fuchs, Abelian Groups, Springer Monographs in
Math, Springer (2015).
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The Extension Property

Theorem 1: Let G be an abelian group, P = ∏
n∈N

< en > and

S =
⊕
n∈N

< en > where < en >∼= Z for all n. Suppose every

homomorphism f : S −→ G extends to a homomorphism
g : P −→ G . Then every countable subgroup of G embeds in a
cotorsion subgroup of G .
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Proof: Suppose, on the contrary, G contains a countable subgroup
A = {an :, n ∈N} " any cotorsion subgroup of G .

Let N =
⋃
k≥1
Xk be an infinite partition of N where |Xk | = ℵ0 for all

k. Then we can write S =
⊕
k≥1
Sk where Sk =

⊕
n∈Xk

< en >.

Define a homomorphism f : S −→ G by f (en) = ak for all n ∈ Xk , so
f (Sk ) =< ak >.
Claim: This f does not extend to a homomorphism g : P −→ G .
Suppose such a g exists. Now, A j im(g) = B ⊕ C , where B ∼= P or
is finitely generated free and C is cotorsion (Property 3). By
supposition, A " C and so if π : B ⊕ C −→ B is the coordinate
projection with ker(π) = C , then π(ak ) 6= 0 for some k. By Property
2., π(ak ) ∈ D, a finitely generated free summand of B. If
π′ : B −→ D is a coordinate projection, then we have a

homomorphism π′πg : P
g→ B ⊕ C π→ B

π′→ D. By Property 1.,
π′πg(en) = 0 for all except finitely many n ∈N. This is a
contradiction since for infinitely many en ∈ Xk ,
π′πg(en) = π′πf (en) = π′π(ak ) 6= 0. So A j C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 7

/ 15



Proof: Suppose, on the contrary, G contains a countable subgroup
A = {an :, n ∈N} " any cotorsion subgroup of G .
Let N =

⋃
k≥1
Xk be an infinite partition of N where |Xk | = ℵ0 for all

k. Then we can write S =
⊕
k≥1
Sk where Sk =

⊕
n∈Xk

< en >.

Define a homomorphism f : S −→ G by f (en) = ak for all n ∈ Xk , so
f (Sk ) =< ak >.
Claim: This f does not extend to a homomorphism g : P −→ G .
Suppose such a g exists. Now, A j im(g) = B ⊕ C , where B ∼= P or
is finitely generated free and C is cotorsion (Property 3). By
supposition, A " C and so if π : B ⊕ C −→ B is the coordinate
projection with ker(π) = C , then π(ak ) 6= 0 for some k. By Property
2., π(ak ) ∈ D, a finitely generated free summand of B. If
π′ : B −→ D is a coordinate projection, then we have a

homomorphism π′πg : P
g→ B ⊕ C π→ B

π′→ D. By Property 1.,
π′πg(en) = 0 for all except finitely many n ∈N. This is a
contradiction since for infinitely many en ∈ Xk ,
π′πg(en) = π′πf (en) = π′π(ak ) 6= 0. So A j C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 7

/ 15



Proof: Suppose, on the contrary, G contains a countable subgroup
A = {an :, n ∈N} " any cotorsion subgroup of G .
Let N =

⋃
k≥1
Xk be an infinite partition of N where |Xk | = ℵ0 for all

k. Then we can write S =
⊕
k≥1
Sk where Sk =

⊕
n∈Xk

< en >.

Define a homomorphism f : S −→ G by f (en) = ak for all n ∈ Xk , so
f (Sk ) =< ak >.

Claim: This f does not extend to a homomorphism g : P −→ G .
Suppose such a g exists. Now, A j im(g) = B ⊕ C , where B ∼= P or
is finitely generated free and C is cotorsion (Property 3). By
supposition, A " C and so if π : B ⊕ C −→ B is the coordinate
projection with ker(π) = C , then π(ak ) 6= 0 for some k. By Property
2., π(ak ) ∈ D, a finitely generated free summand of B. If
π′ : B −→ D is a coordinate projection, then we have a

homomorphism π′πg : P
g→ B ⊕ C π→ B

π′→ D. By Property 1.,
π′πg(en) = 0 for all except finitely many n ∈N. This is a
contradiction since for infinitely many en ∈ Xk ,
π′πg(en) = π′πf (en) = π′π(ak ) 6= 0. So A j C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 7

/ 15



Proof: Suppose, on the contrary, G contains a countable subgroup
A = {an :, n ∈N} " any cotorsion subgroup of G .
Let N =

⋃
k≥1
Xk be an infinite partition of N where |Xk | = ℵ0 for all

k. Then we can write S =
⊕
k≥1
Sk where Sk =

⊕
n∈Xk

< en >.

Define a homomorphism f : S −→ G by f (en) = ak for all n ∈ Xk , so
f (Sk ) =< ak >.
Claim: This f does not extend to a homomorphism g : P −→ G .

Suppose such a g exists. Now, A j im(g) = B ⊕ C , where B ∼= P or
is finitely generated free and C is cotorsion (Property 3). By
supposition, A " C and so if π : B ⊕ C −→ B is the coordinate
projection with ker(π) = C , then π(ak ) 6= 0 for some k. By Property
2., π(ak ) ∈ D, a finitely generated free summand of B. If
π′ : B −→ D is a coordinate projection, then we have a

homomorphism π′πg : P
g→ B ⊕ C π→ B

π′→ D. By Property 1.,
π′πg(en) = 0 for all except finitely many n ∈N. This is a
contradiction since for infinitely many en ∈ Xk ,
π′πg(en) = π′πf (en) = π′π(ak ) 6= 0. So A j C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 7

/ 15



Proof: Suppose, on the contrary, G contains a countable subgroup
A = {an :, n ∈N} " any cotorsion subgroup of G .
Let N =

⋃
k≥1
Xk be an infinite partition of N where |Xk | = ℵ0 for all

k. Then we can write S =
⊕
k≥1
Sk where Sk =

⊕
n∈Xk

< en >.

Define a homomorphism f : S −→ G by f (en) = ak for all n ∈ Xk , so
f (Sk ) =< ak >.
Claim: This f does not extend to a homomorphism g : P −→ G .
Suppose such a g exists. Now, A j im(g) = B ⊕ C , where B ∼= P or
is finitely generated free and C is cotorsion (Property 3). By
supposition, A " C and so if π : B ⊕ C −→ B is the coordinate
projection with ker(π) = C , then π(ak ) 6= 0 for some k. By Property
2., π(ak ) ∈ D, a finitely generated free summand of B. If
π′ : B −→ D is a coordinate projection, then we have a

homomorphism π′πg : P
g→ B ⊕ C π→ B

π′→ D. By Property 1.,
π′πg(en) = 0 for all except finitely many n ∈N. This is a
contradiction since for infinitely many en ∈ Xk ,
π′πg(en) = π′πf (en) = π′π(ak ) 6= 0. So A j C .

Kulumani M. RangaswamyUniversity of Colorado, Colorado Springs ()Cotorsion Modules and a Problem of George Bergman
Rings and Wings Algebra Seminar September 27, 2017 7

/ 15



A new characterization of Cotorsion abelian groups

Theorem 2: Let G be an abelian group. If every countable subgroup
of G embeds in a cotorsion subgroup of G , then G itself is cotorsion.

Proof: Suppose G j H with H/G = Q. We wish to show that
H = G ⊕D for some D j H. Now write the countable group
Q = {rn : n ≥ 1}. For each n, let xn ∈ H such that xn + G = rn. If
X =< {xn : n ≥ 1} >, then G + X = H. Consider G ∩ X . Embed
the countable subgroup G ∩ X in a cotorsion subgroup C of G . If
Y = C + X , then Y /C ∼= Q. Since C is cotorsion, Y = C ⊕D.
Then it is easy to see that H = G ⊕D. This proves Theorem 2..
[ Justification: Now G +D = G + C +D = G + X = H. Also,
G ∩D j G ∩ (C + X ) ∩D = (C + (G ∩ X )) ∩D = C ∩D = 0, as
(G ∩ X ) j C . So H = G ⊕D].
Thus for abelian groups, we have a solution to Bergman’s Problem.
Corollary 3: Let G be an abelian group. Every homomorphism
f : S → G extends to a homomorphism g : P → G if and only if G is
a cotorsion group.
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Generalization to Domains

Let R be an integral domain and let Q be its field of fractions.

The concept of cotorsion abelian groups generalizes three different
ways for modules over the integral domain R.
Definition: (i) An R-module M is said to be a Warfield cotorsion
module if, whenever M j N and N/M is torsion-free, then
N = M ⊕D.
(ii) An R-module M is said to be a Matlis cotorsion module if,
whenever M j N and N/M ∼= Q, then N = M ⊕D.
(iii) An R-module M is said to be a Enochs cotorsion module if,
whenever M j N and N/M is flat, then N = M ⊕D.
In general, Warfield cotorsion = > Matlis cotorsion = > Enochs
cotorsion, but the arrows cannot be reversed.
Our goal is to show that, under certain conditions, each of these
classes of R-modules satisfy the Bergman extension property.
First, some Homological Preliminaries:
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A sequence of modules and maps of the form A
f→ B

g→ C is said to

be exact at B if im(f ) = ker(g). Thus 0→ A
f→ B exact at A

means that ker(f ) = {0}. Likewise, B g→ C → 0 is exact at C means
that im(g) = ker(C → 0) = C . Thus if A is a submodule of B and

B/A = C we have an exact sequence 0→ A
i→ B

η→ C → 0 where i
is the inclusion map and η is the natural coset map.

If 0→ A
f→ B

g→ C → 0 is an exact sequence, we call B an

extension of A by C . A second extension 0→ A
f ′→ B ′

g ′→ C → 0 is
said to be equivalent to the preceding one if there is an isomorphism
φ : B → B ′ such that the following diagram is commutative

0 → A → B → C → 0
‖ ↓ φ ‖

0 → A → B ′ → C → 0

Given A and C , the set of inequivalent extensions of A by C form an
abelian group denoted by Ext1R (C ,A) whose zero element is A⊕ C .
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Every f : A→ A′ induces a homomorphism

Ext1R (C ,A)
f̄→ Ext1R (C ,A

′). To see this, consider

0 → A → B → C → 0
↓ f
A′

−− >
0 → A

i→ B → C → 0
↓ f ↓ g ‖

0 → A′ → B ′ → C → 0
(Pushout)

Here B ′ is the Pushout of f , i and is given by B ′ = (A′ ⊕ B)/D
where D = {(f (a),−i(a)) : a ∈ A}
For a fixed C , Ext1R (C ,−) is a (covariant) functor from the category
M of R-modules to the category A of abelian groups.
Similarly, using a Pullback diagram, a homomorphism g : C ′ → C

induces a homomorphism Ext1R (C ,A)
ḡ→ Ext1R (C

′,A). For a fixed A,
Ext1R (−,A) is a (contravariant) functor from the category M to the
category A of abelian groups.
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Theorem 4: Let 0→ A
f→ B

g→ C → 0 be an exact sequence of
R-modules.

Then, for any R-module X , we obtain the following long exact
sequences:
Ext1R (X ,A)→ Ext1R (X ,B)→ Ext1R (X ,C ) and
Ext1R (C ,X )→ Ext1R (B,X )→ Ext1R (A,X )
Recall, HomR (X ,A) = {f | f : X → A}. HomR (X ,−) and
HomR (−,A) functors from M to A.
Moreover, using the Hom functor we get for any given R-module X

0→ HomR (X ,A)→ HomR (X ,B)→ HomR (X ,C )
δ→

Ext1R (X ,A)→ Ext1R (X ,B)→ Ext1R (X ,C )

0→ HomR (A,X )→ HomR (B,X )→ HomR (C ,X )
δ→

Ext1R (C ,X )→ Ext1R (B,X )→ Ext1R (A,X )
Properties of Hom and Ext: HomR (

⊕
i∈I
Mi ,N) ∼= ∏

i∈I
HomR (Mi ,N);

Ext1R (
⊕
i∈I
Mi ,N) ∼= ∏

i∈I
Ext1R (Mi ,N).

An R-module M is a Matlis Cotorsion module ⇐⇒ Ext1R (Q,M) = 0.
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Let R be an integral domain and let Q be its field of fractions.

For each infinite cardinal κ, let Pκ = ∏
i<κ

Ri , where Ri = R for all i

and let Sκ =
⊕
i<κ

Ri .

We wish to describe R-modules M which have the property that every
homomorphism Sκ → M extends to a homomorphism Pκ → M.

To do this, we need to make some restrictions. We restrict to the case
when κ is a "good" cardinal, that is, when 2κ = κℵ0 . Note that ℵ0 is
a "good" cardinal, but 2ℵ0 is not "good". There are arbitrarily large
"good" cardinals, e.g., any strongly limit cardinal of cofinality ω.

We also assume that |R | ≤ κ.

Let Cκ be the closure of Sκ in the product topology of Pκ. It can be
shown that Cκ/Sκ

∼=
⊕
κℵ0

Q =
⊕
2κ

Q
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Proposition 5: Let C be an R-module of cardinality ≤ 2κ. Then C is
a Matlis cotorsion module, that is, Ext1R (Q,C ) = 0 if and only if
Ext1R (Cκ,C ) = 0.

Proof: Consider the exact sequence 0→ Sκ → Cκ → Cκ/Sκ → 0
where Sκ =

⊕
κ

R is a free R-module of rank κ. Applying the

HomR (−,C ) functor, we get the exact sequence
HomR (Cκ/Sκ,C )→ HomR (Cκ,C )→ HomR (Sκ,C )

δ→
Ext1R (Cκ/Sκ,C )→ Ext1R (Cκ,C )→ Ext1R (Sκ,C ). (∗)
Assume Ext1R (Cκ,C ) = 0. Then we get the exact sequence
HomR (Sκ,C )→ Ext1R (Cκ/Sκ,C )→ 0. So
|HomR (Sκ,C )| ≥ |Ext1R (Cκ/Sκ,C )|. Suppose, by way of
contradiction, Ext1R (Q,C ) 6= 0. Now |HomR (Sκ,C )| =
|HomR (

⊕
κ

R,C )| = |∏
κ

HomR (R,C )| = |∏
κ

C | ≤ (2κ)κ = 2κ. On

the other hand, since Ext1R (Q,C ) 6= 0,
|Ext1R (Cκ/Sκ,C )| = |Ext1R (

⊕
2κ

Q,C )| = ∏
2κ

|Ext1R (Q,C )| ≥ 22
κ
. We

get a contradiction, since 2κ � 22κ
. Thus Ext1R (Q,C ) = 0.
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Conversely, suppose Ext1R (Q,C ) = 0. Then, clearly
Ext1R (Cκ/Sκ,C ) = Ext1R (

⊕
2κ

Q,C ) = ∏
2κ

Ext1R (Q,C ) = 0. From the

exact sequence Ext1R (Cκ/Sκ,C )→ Ext1R (Cκ,C )→ Ext1R (Sκ,C ) = 0,
we conclude that Ext1R (Cκ,C ) = 0.

Note: The above result holds if C is a Warfield cotorsion module.
The same proof works. It also holds when C is Enochs cotorsion, if
we further assume that Q is a flat R-module.
Theorem 6: Suppose C is an R-module with cardinality ≤ 2κ.
Assume further that C is Matlis cotorsion or Warfield cotorsion or
Enochs cotorsion. Then every homomorphism f : Sκ → C extends to
a homomorphism g : Cκ → C .
Proof: If C is Matlis cotorsion so that Ext1R (Q,C ) = 0 and so
Ext1R (Cκ/Sκ,C ) = Ext1R (

⊕
2κ

Q,C ) = ∏
2κ

Ext1R (Q,C ) = 0.

Substituting this in the equation (*), we get

HomR (Cκ,C )→ HomR (Sκ,C )
δ→ 0. This means that every

homomorphism from Sκ to C extends to a homomorphism from Cκ to
C .
Same proof works when C is Warfield cotorsion ot Enochs cotorsion.
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a homomorphism g : Cκ → C .
Proof: If C is Matlis cotorsion so that Ext1R (Q,C ) = 0 and so
Ext1R (Cκ/Sκ,C ) = Ext1R (

⊕
2κ

Q,C ) = ∏
2κ

Ext1R (Q,C ) = 0.

Substituting this in the equation (*), we get

HomR (Cκ,C )→ HomR (Sκ,C )
δ→ 0. This means that every

homomorphism from Sκ to C extends to a homomorphism from Cκ to
C .
Same proof works when C is Warfield cotorsion ot Enochs cotorsion.
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