Cotorsion Modules and a Problem of George Bergman

Kulumani M. Rangaswamy University of Colorado, Colorado Springs

Rings and Wings Algebra Seminar September 27, 2017

Kulumani M. RangaswamyUniversity of ColorCotorsion Modules and a Problem of George I

Introduction

• Let I be an infinite set. Let $\{A_i : i \in I\}$ be a collection of non-trivial groups or non-trivial rings, or modules, or lattices or monoids. The direct product $P = \prod_{i \in I} A_i$ is always big: Its cardinality is at least 2^{\aleph_0} .

Introduction

- Let I be an infinite set. Let $\{A_i : i \in I\}$ be a collection of non-trivial groups or non-trivial rings, or modules, or lattices or monoids. The direct product $P = \prod_{i \in I} A_i$ is always big: Its cardinality is at least 2^{\aleph_0} .
- George Bergman (Pacific J. Math. vol.274 (2015)) investigated objects A (groups, rings, modules, lattices or monoids) which have the property that every homomorphism f : P → A has its image "small". For instance, he was considering the situation when the ker(f) is an ultra product of the A_i based on some ultra filter of subsets of the index set I.

Introduction

- Let I be an infinite set. Let $\{A_i : i \in I\}$ be a collection of non-trivial groups or non-trivial rings, or modules, or lattices or monoids. The direct product $P = \prod_{i \in I} A_i$ is always big: Its cardinality is at least 2^{\aleph_0} .
- George Bergman (Pacific J. Math. vol.274 (2015)) investigated objects A (groups, rings, modules, lattices or monoids) which have the property that every homomorphism f : P → A has its image "small". For instance, he was considering the situation when the ker(f) is an ultra product of the A_i based on some ultra filter of subsets of the index set I.
- **Problem** (Stated for modules): Let *R* be a ring with identity. Let $P = \prod_{i \in I} A_i$ where $A_i = R$ for all *i* and let $S = \bigoplus_{i \in I} A_i$, considered as left *R*-modules. Describe the left *R*-modules *M* which have the property that every homomorphism $f : S \longrightarrow M$ extends to a homomorphism $g : P \longrightarrow M$.

 We will try to answer this question in two cases: (i) when R = Z and thus the Z-modules M are just the additively written abelian groups and (ii) when R is arbitrary integral domain, by using cotorsion pairs of classes of R-modules and homological methods.

- We will try to answer this question in two cases: (i) when R = Z and thus the Z-modules M are just the additively written abelian groups and (ii) when R is arbitrary integral domain, by using cotorsion pairs of classes of R-modules and homological methods.
- Recall, a group G is called a **torsion group** if every element in G has a finite order and G is a **torsion-free group** if every element other than the identity element in G has infinite order.

- We will try to answer this question in two cases: (i) when R = Z and thus the Z-modules M are just the additively written abelian groups and (ii) when R is arbitrary integral domain, by using cotorsion pairs of classes of R-modules and homological methods.
- Recall, a group G is called a **torsion group** if every element in G has a finite order and G is a **torsion-free group** if every element other than the identity element in G has infinite order.
- Definition: An abelian group G is called a cotorsion group if whenever G ⊆ H and H/G is torsion-free, then H = G ⊕ K. Equivalently, G is cotorsion iff G is a direct summand of H whenever H/G ≃ Q. (will prove later)

伺下 イヨト イヨト

- We will try to answer this question in two cases: (i) when R = Z and thus the Z-modules M are just the additively written abelian groups and (ii) when R is arbitrary integral domain, by using cotorsion pairs of classes of R-modules and homological methods.
- Recall, a group G is called a **torsion group** if every element in G has a finite order and G is a **torsion-free group** if every element other than the identity element in G has infinite order.
- Definition: An abelian group G is called a cotorsion group if whenever G ⊆ H and H/G is torsion-free, then H = G ⊕ K. Equivalently, G is cotorsion iff G is a direct summand of H whenever H/G ≃ Q. (will prove later)
- Examples: (i) Any finite abelian group; (ii) ⊕Q or any injective Z-module; (iii) ∏_pZ(p); ∏_{n∈N} F_n, F_n a finite group; (iv) Any abelian group admitting a compact group topology; (v) Homomorphic images of pure-injective abelian groups; (vi) Z is NOT a cotorsion group.

• History: D.K. Harrison introduced the concept of cotorsion groups:

- 4 目 ト - 4 日 ト - 4 日 ト

- History: D.K. Harrison introduced the concept of cotorsion groups:
- If T is any torsion abelian group, then $Ext(\mathbb{Q}/\mathbb{Z}, T)$ is a cotorsion abelian group. If C is any cotorsion group, then $Tor(\mathbb{Q}/\mathbb{Z}, C)$ is a torsion abelian group.

- **History**: D.K. Harrison introduced the concept of cotorsion groups:
- If T is any torsion abelian group, then Ext(Q/Z, T) is a cotorsion abelian group. If C is any cotorsion group, then Tor(Q/Z, C) is a torsion abelian group.
- He showed that there is a categorical equivalence between "reduced" torsion groups and "adjusted" cotorsion groups by
 T → Ext(Q/Z, T) and C → Tor(Q/Z, C). The functors Ext and Tor act as inverse functors on these categories:

 $Tor(\mathbb{Q}/\mathbb{Z}, Ext(\mathbb{Q}/\mathbb{Z}, T)) \cong T$ and $Ext(\mathbb{Q}/\mathbb{Z}, Tor(\mathbb{Q}/\mathbb{Z}, C) \cong C$.

伺下 イヨト イヨト

• Let $P = \prod_{n \in \mathbb{N}} \mathbb{Z} = \prod_{n \in \mathbb{N}} \langle e_n \rangle$ be a direct product of infinite cyclic (abelian) groups $\langle e_n \rangle$, where \mathbb{N} denotes the set $\{1, 2, 3, \cdots\}$.

- Let $P = \prod_{n \in \mathbb{N}} \mathbb{Z} = \prod_{n \in \mathbb{N}} \langle e_n \rangle$ be a direct product of infinite cyclic (abelian) groups $\langle e_n \rangle$, where \mathbb{N} denotes the set $\{1, 2, 3, \cdots\}$.
- If $D = \mathbb{Z} \oplus \mathbb{Z} \cdots \oplus \mathbb{Z}$ (finitely generated free abelian group), then every homomorphism $f : P \longrightarrow D$ satisfies $f(e_n) = 0$ for all except finitely many $n \in \mathbb{N}$. — a Slender group

・四・・ モ・・ キョ・

- Let $P = \prod_{n \in \mathbb{N}} \mathbb{Z} = \prod_{n \in \mathbb{N}} \langle e_n \rangle$ be a direct product of infinite cyclic (abelian) groups $\langle e_n \rangle$, where \mathbb{N} denotes the set $\{1, 2, 3, \cdots\}$.
- If $D = \mathbb{Z} \oplus \mathbb{Z} \cdots \oplus \mathbb{Z}$ (finitely generated free abelian group), then every homomorphism $f : P \longrightarrow D$ satisfies $f(e_n) = 0$ for all except finitely many $n \in \mathbb{N}$. — a Slender group
- Given any a ∈ P, there is a finitely generated free direct summand D of P such that a ∈ D (and P = D ⊕ E). Separable group.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

- Let $P = \prod_{n \in \mathbb{N}} \mathbb{Z} = \prod_{n \in \mathbb{N}} \langle e_n \rangle$ be a direct product of infinite cyclic (abelian) groups $\langle e_n \rangle$, where \mathbb{N} denotes the set $\{1, 2, 3, \cdots\}$.
- If $D = \mathbb{Z} \oplus \mathbb{Z} \cdots \oplus \mathbb{Z}$ (finitely generated free abelian group), then every homomorphism $f : P \longrightarrow D$ satisfies $f(e_n) = 0$ for all except finitely many $n \in \mathbb{N}$. — a Slender group
- Q Given any a ∈ P, there is a finitely generated free direct summand D of P such that a ∈ D (and P = D ⊕ E). Separable group.
- For any non-zero subgroup A of P, $P/A = B \oplus C$, where $B \cong P$ or $\mathbb{Z} \oplus \mathbb{Z} \dots \oplus \mathbb{Z}$ (finitely generated free) and C is a cotorsion group.

米部 米 油 と 米 油 と 一 油

- Let $P = \prod_{n \in \mathbb{N}} \mathbb{Z} = \prod_{n \in \mathbb{N}} \langle e_n \rangle$ be a direct product of infinite cyclic (abelian) groups $\langle e_n \rangle$, where \mathbb{N} denotes the set $\{1, 2, 3, \cdots\}$.
- If $D = \mathbb{Z} \oplus \mathbb{Z} \cdots \oplus \mathbb{Z}$ (finitely generated free abelian group), then every homomorphism $f : P \longrightarrow D$ satisfies $f(e_n) = 0$ for all except finitely many $n \in \mathbb{N}$. — a Slender group
- Given any a ∈ P, there is a finitely generated free direct summand D of P such that a ∈ D (and P = D ⊕ E). Separable group.
- For any non-zero subgroup A of P, $P/A = B \oplus C$, where $B \cong P$ or $\mathbb{Z} \oplus \mathbb{Z} \cdots \oplus \mathbb{Z}$ (finitely generated free) and C is a cotorsion group.
- REFERENCE: L. Fuchs, Abelian Groups, Springer Monographs in Math, Springer (2015).

- 木田 ト 木田 ト 一日

• Theorem 1: Let G be an abelian group, $P = \prod_{n \in \mathbb{N}} \langle e_n \rangle$ and $S = \bigoplus_{n \in \mathbb{N}} \langle e_n \rangle$ where $\langle e_n \rangle \cong \mathbb{Z}$ for all n. Suppose every homomorphism $f: S \longrightarrow G$ extends to a homomorphism $g: P \longrightarrow G$. Then every countable subgroup of G embeds in a cotorsion subgroup of G.

伺下 イヨト イヨト

• **Proof**: Suppose, on the contrary, *G* contains a countable subgroup $A = \{a_n : n \in \mathbb{N}\} \nsubseteq$ any cotorsion subgroup of *G*.

- **Proof**: Suppose, on the contrary, *G* contains a countable subgroup $A = \{a_n : n \in \mathbb{N}\} \not\subseteq$ any cotorsion subgroup of *G*.
- Let $\mathbb{N} = \bigcup_{k \ge 1} X_k$ be an infinite partition of \mathbb{N} where $|X_k| = \aleph_0$ for all

k. Then we can write $S = \bigoplus_{k \ge 1} S_k$ where $S_k = \bigoplus_{n \in X_k} \langle e_n \rangle$.

- **Proof**: Suppose, on the contrary, *G* contains a countable subgroup $A = \{a_n : n \in \mathbb{N}\} \not\subseteq$ any cotorsion subgroup of *G*.
- Let $\mathbb{N} = \bigcup_{k \ge 1} X_k$ be an infinite partition of \mathbb{N} where $|X_k| = leph_0$ for all
 - k. Then we can write $S = \bigoplus S_k$ where $S_k = \bigoplus < e_n >$.
- Define a homomorphism $f: S \longrightarrow G$ by $f(e_n) = a_k$ for all $n \in X_k$, so $f(S_k) = \langle a_k \rangle$.

- **Proof**: Suppose, on the contrary, *G* contains a countable subgroup $A = \{a_n : n \in \mathbb{N}\} \nsubseteq$ any cotorsion subgroup of *G*.
- Let $\mathbb{N} = \bigcup_{k \geq 1} X_k$ be an infinite partition of \mathbb{N} where $|X_k| = leph_0$ for all
 - k. Then we can write $S = \bigoplus_{k \in I} S_k$ where $S_k = \bigoplus_{k \in I} \langle e_n \rangle$.
- Define a homomorphism $f: S \longrightarrow G$ by $f(e_n) = a_k$ for all $n \in X_k$, so $f(S_k) = \langle a_k \rangle$.
- Claim: This f does not extend to a homomorphism $g: P \longrightarrow G$.

- **Proof**: Suppose, on the contrary, *G* contains a countable subgroup $A = \{a_n : n \in \mathbb{N}\} \not\subseteq$ any cotorsion subgroup of *G*.
- Let $\mathbb{N} = \bigcup_{k \geq 1} X_k$ be an infinite partition of \mathbb{N} where $|X_k| = leph_0$ for all
 - k. Then we can write $S = \bigoplus_{k \ge 1} S_k$ where $S_k = \bigoplus_{n \in X_k} \langle e_n \rangle$.
- Define a homomorphism $f:\overline{S} \longrightarrow G$ by $f(e_n) = a_k$ for all $n \in X_k$, so $f(S_k) = \langle a_k \rangle$.
- Claim: This f does not extend to a homomorphism $g: P \longrightarrow G$.
- Suppose such a g exists. Now, $A \subseteq im(g) = B \oplus C$, where $B \cong P$ or is finitely generated free and C is cotorsion (Property 3). By supposition, $A \not\subseteq C$ and so if $\pi : B \oplus C \longrightarrow B$ is the coordinate projection with ker(π) = C, then $\pi(a_k) \neq 0$ for some k. By Property 2., $\pi(a_k) \in D$, a finitely generated free summand of B. If $\pi': B \longrightarrow D$ is a coordinate projection, then we have a homomorphism $\pi' \pi g : P \xrightarrow{g} B \oplus C \xrightarrow{\pi} B \xrightarrow{\pi'} D$. By Property 1., $\pi'\pi g(e_n)=0$ for all except finitely many $n\in\mathbb{N}$. This is a contradiction since for infinitely many $e_n \in X_k$, $\pi'\pi g(e_n) = \pi'\pi f(e_n) = \pi'\pi(a_k) \neq 0$. So $\mathcal{A} \subseteq \mathcal{G}$.

• **Theorem 2:** Let G be an abelian group. If every countable subgroup of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.

- **Theorem 2:** Let G be an abelian group. If every countable subgroup of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.
- **Proof:** Suppose $G \subseteq H$ with $H/G = \mathbb{Q}$. We wish to show that $H = G \oplus D$ for some $D \subseteq H$. Now write the countable group $\mathbb{Q} = \{r_n : n \ge 1\}$. For each n, let $x_n \in H$ such that $x_n + G = r_n$. If $X = \langle x_n : n \ge 1 \rangle$, then G + X = H. Consider $G \cap X$. Embed the countable subgroup $G \cap X$ in a cotorsion subgroup C of G. If Y = C + X, then $Y/C \cong \mathbb{Q}$. Since C is cotorsion, $Y = C \oplus D$. Then it is easy to see that $H = G \oplus D$. This proves Theorem 2...

- **Theorem 2:** Let G be an abelian group. If every countable subgroup of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.
- **Proof:** Suppose $G \subseteq H$ with $H/G = \mathbb{Q}$. We wish to show that $H = G \oplus D$ for some $D \subseteq H$. Now write the countable group $\mathbb{Q} = \{r_n : n \ge 1\}$. For each n, let $x_n \in H$ such that $x_n + G = r_n$. If $X = \langle x_n : n \ge 1 \rangle \rangle$, then G + X = H. Consider $G \cap X$. Embed the countable subgroup $G \cap X$ in a cotorsion subgroup C of G. If Y = C + X, then $Y/C \cong \mathbb{Q}$. Since C is cotorsion, $Y = C \oplus D$. Then it is easy to see that $H = G \oplus D$. This proves Theorem 2...
- [Justification: Now G + D = G + C + D = G + X = H. Also, $G \cap D \subseteq G \cap (C + X) \cap D = (C + (G \cap X)) \cap D = C \cap D = 0$, as $(G \cap X) \subseteq C$. So $H = G \oplus D$].

個 と く ヨ と く ヨ と

- **Theorem 2:** Let G be an abelian group. If every countable subgroup of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.
- **Proof:** Suppose $G \subseteq H$ with $H/G = \mathbb{Q}$. We wish to show that $H = G \oplus D$ for some $D \subseteq H$. Now write the countable group $\mathbb{Q} = \{r_n : n \ge 1\}$. For each n, let $x_n \in H$ such that $x_n + G = r_n$. If $X = \langle x_n : n \ge 1 \rangle \rangle$, then G + X = H. Consider $G \cap X$. Embed the countable subgroup $G \cap X$ in a cotorsion subgroup C of G. If Y = C + X, then $Y/C \cong \mathbb{Q}$. Since C is cotorsion, $Y = C \oplus D$. Then it is easy to see that $H = G \oplus D$. This proves Theorem 2...
- [Justification: Now G + D = G + C + D = G + X = H. Also, $G \cap D \subseteq G \cap (C + X) \cap D = (C + (G \cap X)) \cap D = C \cap D = 0$, as $(G \cap X) \subseteq C$. So $H = G \oplus D$].
- Thus for abelian groups, we have a solution to Bergman's Problem.

- **Theorem 2:** Let G be an abelian group. If every countable subgroup of G embeds in a cotorsion subgroup of G, then G itself is cotorsion.
- **Proof:** Suppose $G \subseteq H$ with $H/G = \mathbb{Q}$. We wish to show that $H = G \oplus D$ for some $D \subseteq H$. Now write the countable group $\mathbb{Q} = \{r_n : n \ge 1\}$. For each n, let $x_n \in H$ such that $x_n + G = r_n$. If $X = \langle x_n : n \ge 1 \rangle \rangle$, then G + X = H. Consider $G \cap X$. Embed the countable subgroup $G \cap X$ in a cotorsion subgroup C of G. If Y = C + X, then $Y/C \cong \mathbb{Q}$. Since C is cotorsion, $Y = C \oplus D$. Then it is easy to see that $H = G \oplus D$. This proves Theorem 2...
- [Justification: Now G + D = G + C + D = G + X = H. Also, $G \cap D \subseteq G \cap (C + X) \cap D = (C + (G \cap X)) \cap D = C \cap D = 0$, as $(G \cap X) \subseteq C$. So $H = G \oplus D$].
- Thus for abelian groups, we have a solution to Bergman's Problem.
- **Corollary 3**: Let G be an abelian group. Every homomorphism $f: S \to G$ extends to a homomorphism $g: P \to G$ if and only if G is a cotorsion group.

• Let R be an integral domain and let Q be its field of fractions.

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.
- Definition: (i) An *R*-module *M* is said to be a Warfield cotorsion module if, whenever *M* ⊆ *N* and *N*/*M* is torsion-free, then *N* = *M* ⊕ *D*.

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.
- Definition: (i) An *R*-module *M* is said to be a Warfield cotorsion module if, whenever *M* ⊆ *N* and *N*/*M* is torsion-free, then *N* = *M* ⊕ *D*.
- (ii) An *R*-module *M* is said to be a **Matlis cotorsion module** if, whenever $M \subseteq N$ and $N/M \cong Q$, then $N = M \oplus D$.

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.
- Definition: (i) An *R*-module *M* is said to be a Warfield cotorsion module if, whenever *M* ⊆ *N* and *N*/*M* is torsion-free, then *N* = *M* ⊕ *D*.
- (ii) An *R*-module *M* is said to be a **Matlis cotorsion module** if, whenever $M \subseteq N$ and $N/M \cong Q$, then $N = M \oplus D$.
- (iii) An *R*-module *M* is said to be a **Enochs cotorsion module if**, whenever $M \subseteq N$ and N/M is flat, then $N = M \oplus D$.

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.
- Definition: (i) An *R*-module *M* is said to be a Warfield cotorsion module if, whenever *M* ⊆ *N* and *N*/*M* is torsion-free, then *N* = *M* ⊕ *D*.
- (ii) An *R*-module *M* is said to be a **Matlis cotorsion module** if, whenever $M \subseteq N$ and $N/M \cong Q$, then $N = M \oplus D$.
- (iii) An *R*-module *M* is said to be a **Enochs cotorsion module if**, whenever $M \subseteq N$ and N/M is flat, then $N = M \oplus D$.
- In general, Warfield cotorsion = > Matlis cotorsion = > Enochs cotorsion, but the arrows cannot be reversed.

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.
- Definition: (i) An *R*-module *M* is said to be a Warfield cotorsion module if, whenever *M* ⊆ *N* and *N*/*M* is torsion-free, then *N* = *M* ⊕ *D*.
- (ii) An *R*-module *M* is said to be a **Matlis cotorsion module** if, whenever $M \subseteq N$ and $N/M \cong Q$, then $N = M \oplus D$.
- (iii) An *R*-module *M* is said to be a **Enochs cotorsion module if**, whenever $M \subseteq N$ and N/M is flat, then $N = M \oplus D$.
- In general, Warfield cotorsion = > Matlis cotorsion = > Enochs cotorsion, but the arrows cannot be reversed.
- Our goal is to show that, under certain conditions, each of these classes of *R*-modules satisfy the Bergman extension property.

A (10) A (10)

- Let R be an integral domain and let Q be its field of fractions.
- The concept of cotorsion abelian groups generalizes three different ways for modules over the integral domain *R*.
- Definition: (i) An *R*-module *M* is said to be a Warfield cotorsion module if, whenever *M* ⊆ *N* and *N*/*M* is torsion-free, then *N* = *M* ⊕ *D*.
- (ii) An *R*-module *M* is said to be a **Matlis cotorsion module** if, whenever $M \subseteq N$ and $N/M \cong Q$, then $N = M \oplus D$.
- (iii) An *R*-module *M* is said to be a **Enochs cotorsion module if**, whenever $M \subseteq N$ and N/M is flat, then $N = M \oplus D$.
- In general, Warfield cotorsion = > Matlis cotorsion = > Enochs cotorsion, but the arrows cannot be reversed.
- Our goal is to show that, under certain conditions, each of these classes of *R*-modules satisfy the Bergman extension property.
- First, some Homological Preliminaries:

A sequence of modules and maps of the form A ^f→ B ^g→ C is said to be exact at B if im(f) = ker(g). Thus 0 → A ^f→ B exact at A means that ker(f) = {0}. Likewise, B ^g→ C → 0 is exact at C means that im(g) = ker(C → 0) = C. Thus if A is a submodule of B and B/A = C we have an exact sequence 0 → A ⁱ→ B ^η→ C → 0 where i is the inclusion map and η is the natural coset map.

- A sequence of modules and maps of the form A ^f→ B ^g→ C is said to be exact at B if im(f) = ker(g). Thus 0 → A ^f→ B exact at A means that ker(f) = {0}. Likewise, B ^g→ C → 0 is exact at C means that im(g) = ker(C → 0) = C. Thus if A is a submodule of B and B/A = C we have an exact sequence 0 → A ⁱ→ B ^η→ C → 0 where i is the inclusion map and η is the natural coset map.
- If 0 → A ^f→ B ^g→ C → 0 is an exact sequence, we call B an extension of A by C. A second extension 0 → A ^{f'}→ B' ^{g'}→ C → 0 is said to be equivalent to the preceding one if there is an isomorphism φ : B → B' such that the following diagram is commutative

- A sequence of modules and maps of the form A ^f→ B ^g→ C is said to be exact at B if im(f) = ker(g). Thus 0 → A ^f→ B exact at A means that ker(f) = {0}. Likewise, B ^g→ C → 0 is exact at C means that im(g) = ker(C → 0) = C. Thus if A is a submodule of B and B/A = C we have an exact sequence 0 → A ⁱ→ B ^η→ C → 0 where i is the inclusion map and η is the natural coset map.
- If 0 → A → B → C → 0 is an exact sequence, we call B an extension of A by C. A second extension 0 → A → B' ⇒ C → 0 is said to be equivalent to the preceding one if there is an isomorphism φ : B → B' such that the following diagram is commutative

- A sequence of modules and maps of the form A ^f→ B ^g→ C is said to be exact at B if im(f) = ker(g). Thus 0 → A ^f→ B exact at A means that ker(f) = {0}. Likewise, B ^g→ C → 0 is exact at C means that im(g) = ker(C → 0) = C. Thus if A is a submodule of B and B/A = C we have an exact sequence 0 → A ⁱ→ B ^η→ C → 0 where i is the inclusion map and η is the natural coset map.
- If 0 → A → B → C → 0 is an exact sequence, we call B an extension of A by C. A second extension 0 → A → B' → C → 0 is said to be equivalent to the preceding one if there is an isomorphism φ : B → B' such that the following diagram is commutative

• Given A and C, the set of inequivalent extensions of A by C form an abelian group denoted by $Ext_R^1(C, A)$ whose zero element is $A \oplus C$.

• Every $f : A \to A'$ induces a homomorphism $Ext_R^1(C, A) \xrightarrow{\tilde{f}} Ext_R^1(C, A')$. To see this, consider

伺下 イヨト イヨト

• Every $f : A \to A'$ induces a homomorphism $Ext_R^1(C, A) \xrightarrow{\tilde{f}} Ext_R^1(C, A')$. To see this, consider $0 \to A \to B \to C \to 0$ • $\downarrow f$ A'

- Every $f : A \to A'$ induces a homomorphism $Ext_R^1(C, A) \xrightarrow{\tilde{f}} Ext_R^1(C, A')$. To see this, consider $0 \to A \to B \to C \to 0$ • $\downarrow f$ A'• $--> 0 \to A \xrightarrow{i} B \to C \to 0$ • $\downarrow f \downarrow g \parallel$ (Pushout) $0 \to A' \to B' \to C \to 0$
- Here B' is the **Pushout** of f, i and is given by $B' = (A' \oplus B)/D$ where $D = \{(f(a), -i(a)) : a \in A\}$

- Every $f : A \to A'$ induces a homomorphism $Ext_R^1(C, A) \xrightarrow{\tilde{f}} Ext_R^1(C, A')$. To see this, consider $0 \to A \to B \to C \to 0$ • $\downarrow f$ A'• $--> 0 \to A \xrightarrow{i} B \to C \to 0$ • $\downarrow f \downarrow g \parallel$ (Pushout) $0 \to A' \to B' \to C \to 0$
- Here B' is the **Pushout** of f, i and is given by $B' = (A' \oplus B)/D$ where $D = \{(f(a), -i(a)) : a \in A\}$
- For a fixed C, Ext¹_R(C, -) is a (covariant) functor from the category
 M of R-modules to the category A of abelian groups.

• Every
$$f : A \to A'$$
 induces a homomorphism
 $Ext_R^1(C, A) \xrightarrow{\tilde{f}} Ext_R^1(C, A')$. To see this, consider
 $0 \to A \to B \to C \to 0$
• $\downarrow f$
 A'
• $--> 0 \to A \xrightarrow{i} B \to C \to 0$
• $\downarrow f \downarrow g \parallel$ (Pushout)
 $0 \to A' \to B' \to C \to 0$

- Here B' is the **Pushout** of f, i and is given by $B' = (A' \oplus B)/D$ where $D = \{(f(a), -i(a)) : a \in A\}$
- For a fixed C, Ext¹_R(C, -) is a (covariant) functor from the category
 M of R-modules to the category A of abelian groups.
- Similarly, using a Pullback diagram, a homomorphism g : C' → C induces a homomorphism Ext¹_R(C, A) → Ext¹_R(C', A). For a fixed A, Ext¹_R(-, A) is a (contravariant) functor from the category M to the category A of abelian groups.

過 ト イ ヨ ト イ ヨ ト

• **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext_R^1(C, X) \to Ext_R^1(B, X) \to Ext_R^1(A, X)$

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext^1_R(C, X) \to Ext^1_R(B, X) \to Ext^1_R(A, X)$
- Recall, $Hom_R(X, A) = \{f | f : X \to A\}$. $Hom_R(X, -)$ and $Hom_R(-, A)$ functors from **M** to **A**.

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext^1_R(C, X) \to Ext^1_R(B, X) \to Ext^1_R(A, X)$
- Recall, $Hom_R(X, A) = \{f | f : X \to A\}$. $Hom_R(X, -)$ and $Hom_R(-, A)$ functors from **M** to **A**.
- Moreover, using the Hom functor we get for any given R-module X

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext^1_R(C, X) \to Ext^1_R(B, X) \to Ext^1_R(A, X)$
- Recall, $Hom_R(X, A) = \{f | f : X \to A\}$. $Hom_R(X, -)$ and $Hom_R(-, A)$ functors from **M** to **A**.
- Moreover, using the Hom functor we get for any given R-module X
- 0 \rightarrow Hom_R(X, A) \rightarrow Hom_R(X, B) \rightarrow Hom_R(X, C) $\xrightarrow{\delta}$ Ext¹_R(X, A) \rightarrow Ext¹_R(X, B) \rightarrow Ext¹_R(X, C)

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext^1_R(C, X) \to Ext^1_R(B, X) \to Ext^1_R(A, X)$
- Recall, $Hom_R(X, A) = \{f | f : X \to A\}$. $Hom_R(X, -)$ and $Hom_R(-, A)$ functors from **M** to **A**.
- Moreover, using the Hom functor we get for any given R-module X
- 0 \rightarrow Hom_R(X, A) \rightarrow Hom_R(X, B) \rightarrow Hom_R(X, C) $\xrightarrow{\delta}$ Ext¹_R(X, A) \rightarrow Ext¹_R(X, B) \rightarrow Ext¹_R(X, C)
- 0 \rightarrow Hom_R(A, X) \rightarrow Hom_R(B, X) \rightarrow Hom_R(C, X) $\xrightarrow{\delta}$ Ext¹_R(C, X) \rightarrow Ext¹_R(B, X) \rightarrow Ext¹_R(A, X)

副下 《唐下 《唐下

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext_R^1(C, X) \to Ext_R^1(B, X) \to Ext_R^1(A, X)$
- Recall, $Hom_R(X, A) = \{f | f : X \to A\}$. $Hom_R(X, -)$ and $Hom_R(-, A)$ functors from **M** to **A**.
- Moreover, using the Hom functor we get for any given R-module X
- 0 \rightarrow Hom_R(X, A) \rightarrow Hom_R(X, B) \rightarrow Hom_R(X, C) $\xrightarrow{\delta}$ Ext¹_R(X, A) \rightarrow Ext¹_R(X, B) \rightarrow Ext¹_R(X, C)
- 0 \rightarrow Hom_R(A, X) \rightarrow Hom_R(B, X) \rightarrow Hom_R(C, X) $\xrightarrow{\delta}$ Ext¹_R(C, X) \rightarrow Ext¹_R(B, X) \rightarrow Ext¹_R(A, X)
- Properties of Hom and Ext: $Hom_R(\bigoplus_{i \in I} M_i, N) \cong \prod_{i \in I} Hom_R(M_i, N);$ $Ext^1_R(\bigoplus_{i \in I} M_i, N) \cong \prod_{i \in I} Ext^1_R(M_i, N).$

個 と く き と く き と

- **Theorem 4**: Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules.
- Then, for any *R*-module *X*, we obtain the following long exact sequences:
- $Ext^1_R(X, A) \to Ext^1_R(X, B) \to Ext^1_R(X, C)$ and
- $Ext_R^1(C, X) \to Ext_R^1(B, X) \to Ext_R^1(A, X)$
- Recall, $Hom_R(X, A) = \{f | f : X \to A\}$. $Hom_R(X, -)$ and $Hom_R(-, A)$ functors from **M** to **A**.
- Moreover, using the Hom functor we get for any given R-module X
- 0 \rightarrow Hom_R(X, A) \rightarrow Hom_R(X, B) \rightarrow Hom_R(X, C) $\xrightarrow{\delta}$ Ext¹_R(X, A) \rightarrow Ext¹_R(X, B) \rightarrow Ext¹_R(X, C)
- 0 \rightarrow Hom_R(A, X) \rightarrow Hom_R(B, X) \rightarrow Hom_R(C, X) $\xrightarrow{\delta}$ Ext¹_R(C, X) \rightarrow Ext¹_R(B, X) \rightarrow Ext¹_R(A, X)
- Properties of Hom and Ext: $Hom_R(\bigoplus_{i \in I} M_i, N) \cong \prod_{i \in I} Hom_R(M_i, N);$

$$Ext_R^1(\bigoplus_{i\in I} M_i, N) \cong \prod_{i\in I} Ext_R^1(M_i, N).$$

• An *R*-module *M* is a Matlis Cotorsion module $\iff Ext_R^1(Q, M) = 0$.

• Let R be an integral domain and let Q be its field of fractions.

(日) (同) (三) (三)

- Let R be an integral domain and let Q be its field of fractions.
- For each infinite cardinal κ , let $P_{\kappa} = \prod_{i < \kappa} R_i$, where $R_i = R$ for all i

and let $S_{\kappa} = \bigoplus_{i < \kappa} R_i$.

- Let R be an integral domain and let Q be its field of fractions.
- For each infinite cardinal κ , let $P_{\kappa} = \prod_{i < \kappa} R_i$, where $R_i = R$ for all iand let $S_{\kappa} = \bigoplus R_i$.
- We wish to describe *R*-modules *M* which have the property that every homomorphism $S_{\kappa} \to M$ extends to a homomorphism $P_{\kappa} \to M$.

- Let R be an integral domain and let Q be its field of fractions.
- For each infinite cardinal κ , let $P_{\kappa} = \prod_{i < \kappa} R_i$, where $R_i = R$ for all iand let $S_{\kappa} = \bigoplus R_i$.
- We wish to describe *R*-modules *M* which have the property that every homomorphism $S_{\kappa} \to M$ extends to a homomorphism $P_{\kappa} \to M$.
- To do this, we need to make some restrictions. We restrict to the case when κ is a "good" cardinal, that is, when 2^κ = κ^{ℵ0}. Note that ℵ0 is a "good" cardinal, but 2^{ℵ0} is not "good". There are arbitrarily large "good" cardinals, e.g., any strongly limit cardinal of cofinality ω.

- Let R be an integral domain and let Q be its field of fractions.
- For each infinite cardinal κ , let $P_{\kappa} = \prod_{i < \kappa} R_i$, where $R_i = R$ for all iand let $S_{\kappa} = \bigoplus R_i$.
- We wish to describe *R*-modules *M* which have the property that every homomorphism $S_{\kappa} \to M$ extends to a homomorphism $P_{\kappa} \to M$.
- To do this, we need to make some restrictions. We restrict to the case when κ is a "good" cardinal, that is, when 2^κ = κ^{ℵ0}. Note that ℵ0 is a "good" cardinal, but 2^{ℵ0} is not "good". There are arbitrarily large "good" cardinals, e.g., any strongly limit cardinal of cofinality ω.
- We also assume that $|R| \leq \kappa$.

- Let R be an integral domain and let Q be its field of fractions.
- For each infinite cardinal κ , let $P_{\kappa} = \prod_{i < \kappa} R_i$, where $R_i = R$ for all iand let $S_{\kappa} = \bigoplus R_i$.
- We wish to describe *R*-modules *M* which have the property that every homomorphism $S_{\kappa} \to M$ extends to a homomorphism $P_{\kappa} \to M$.
- To do this, we need to make some restrictions. We restrict to the case when κ is a "good" cardinal, that is, when 2^κ = κ^{ℵ₀}. Note that ℵ₀ is a "good" cardinal, but 2^{ℵ₀} is not "good". There are arbitrarily large "good" cardinals, e.g., any strongly limit cardinal of cofinality ω.
- We also assume that $|R| \leq \kappa$.

• Let C_{κ} be the closure of S_{κ} in the product topology of P_{κ} . It can be shown that $C_{\kappa}/S_{\kappa} \cong \bigoplus_{\kappa \gg 0} Q = \bigoplus_{2^{\kappa}} Q$

伺 ト イヨ ト イヨ ト

• **Proposition 5**: Let C be an R-module of cardinality $\leq 2^{\kappa}$. Then C is a Matlis cotorsion module, that is, $Ext_R^1(Q, C) = 0$ if and only if $Ext_R^1(C_{\kappa}, C) = 0$.

- **Proposition 5**: Let C be an R-module of cardinality $\leq 2^{\kappa}$. Then C is a Matlis cotorsion module, that is, $Ext_R^1(Q, C) = 0$ if and only if $Ext_R^1(C_{\kappa}, C) = 0$.
- **Proof**: Consider the exact sequence $0 \to S_{\kappa} \to C_{\kappa} \to C_{\kappa}/S_{\kappa} \to 0$ where $S_{\kappa} = \bigoplus_{\kappa} R$ is a free *R*-module of rank κ . Applying the $Hom_R(-, C)$ functor, we get the exact sequence

- **Proposition 5**: Let C be an R-module of cardinality $\leq 2^{\kappa}$. Then C is a Matlis cotorsion module, that is, $Ext_R^1(Q, C) = 0$ if and only if $Ext_R^1(C_{\kappa}, C) = 0$.
- **Proof**: Consider the exact sequence $0 \to S_{\kappa} \to C_{\kappa} \to C_{\kappa}/S_{\kappa} \to 0$ where $S_{\kappa} = \bigoplus_{\kappa} R$ is a free *R*-module of rank κ . Applying the $Hom_R(-, C)$ functor, we get the exact sequence
- $Hom_R(C_{\kappa}/S_{\kappa}, C) \to Hom_R(C_{\kappa}, C) \to Hom_R(S_{\kappa}, C) \xrightarrow{\circ} Ext^1_R(C_{\kappa}/S_{\kappa}, C) \to Ext^1_R(C_{\kappa}, C) \to Ext^1_R(S_{\kappa}, C).$ (*)

- **Proposition 5**: Let *C* be an *R*-module of cardinality $\leq 2^{\kappa}$. Then *C* is a Matlis cotorsion module, that is, $Ext_R^1(Q, C) = 0$ if and only if $Ext_R^1(C_{\kappa}, C) = 0$.
- **Proof**: Consider the exact sequence $0 \to S_{\kappa} \to C_{\kappa} \to C_{\kappa}/S_{\kappa} \to 0$ where $S_{\kappa} = \bigoplus_{\kappa} R$ is a free *R*-module of rank κ . Applying the $Hom_{R}(-, C)$ functor, we get the exact sequence
- $Hom_R(C_{\kappa}/S_{\kappa}, C) \to Hom_R(C_{\kappa}, C) \to Hom_R(S_{\kappa}, C) \xrightarrow{\delta} Ext^1_R(C_{\kappa}/S_{\kappa}, C) \to Ext^1_R(C_{\kappa}, C) \to Ext^1_R(S_{\kappa}, C).$ (*)
- Assume $Ext_R^1(C_{\kappa}, C) = 0$. Then we get the exact sequence $Hom_R(S_{\kappa}, C) \rightarrow Ext_R^1(C_{\kappa}/S_{\kappa}, C) \rightarrow 0$. So $|Hom_R(S_{\kappa}, C)| \ge |Ext_R^1(C_{\kappa}/S_{\kappa}, C)|$. Suppose, by way of contradiction, $Ext_R^1(Q, C) \ne 0$. Now $|Hom_R(S_{\kappa}, C)| =$ $|Hom_R(\bigoplus_{\kappa} R, C)| = |\prod_{\kappa} Hom_R(R, C)| = |\prod_{\kappa} C| \le (2^{\kappa})^{\kappa} = 2^{\kappa}$. On the other hand, since $Ext_R^1(Q, C) \ne 0$, $|Ext_R^1(C_{\kappa}/S_{\kappa}, C)| = |Ext_R^1(\bigoplus_{2^{\kappa}} Q, C)| = \prod_{2^{\kappa}} |Ext_R^1(Q, C)| \ge 2^{2^{\kappa}}$. We get a contradiction, since $2^{\kappa} \ne 2^{2^{\kappa}}$. Thus $Ext_R^1(Q, C) = 0$.

• Conversely, suppose $Ext_R^1(Q, C) = 0$. Then, clearly $Ext_R^1(C_{\kappa}/S_{\kappa}, C) = Ext_R^1(\bigoplus_{2^{\kappa}}Q, C) = \prod_{2^{\kappa}}Ext_R^1(Q, C) = 0$. From the exact sequence $Ext_R^1(C_{\kappa}/S_{\kappa}, C) \to Ext_R^1(C_{\kappa}, C) \to Ext_R^1(S_{\kappa}, C) = 0$, we conclude that $Ext_R^1(C_{\kappa}, C) = 0$.

- Conversely, suppose $Ext_R^1(Q, C) = 0$. Then, clearly $Ext_R^1(C_{\kappa}/S_{\kappa}, C) = Ext_R^1(\bigoplus_{2^{\kappa}}Q, C) = \prod_{2^{\kappa}}Ext_R^1(Q, C) = 0$. From the exact sequence $Ext_R^1(C_{\kappa}/S_{\kappa}, C) \to Ext_R^1(C_{\kappa}, C) \to Ext_R^1(S_{\kappa}, C) = 0$, we conclude that $Ext_R^1(C_{\kappa}, C) = 0$.
- Note: The above result holds if C is a Warfield cotorsion module. The same proof works. It also holds when C is Enochs cotorsion, if we further assume that Q is a flat R-module.

- Conversely, suppose $Ext_R^1(Q, C) = 0$. Then, clearly $Ext_R^1(C_{\kappa}/S_{\kappa}, C) = Ext_R^1(\bigoplus_{2^{\kappa}}Q, C) = \prod_{2^{\kappa}}Ext_R^1(Q, C) = 0$. From the exact sequence $Ext_R^1(C_{\kappa}/S_{\kappa}, C) \to Ext_R^1(C_{\kappa}, C) \to Ext_R^1(S_{\kappa}, C) = 0$, we conclude that $Ext_R^1(C_{\kappa}, C) = 0$.
- **Note**: The above result holds if *C* is a Warfield cotorsion module. The same proof works. It also holds when *C* is Enochs cotorsion, if we further assume that *Q* is a flat *R*-module.
- **Theorem 6:** Suppose C is an R-module with cardinality $\leq 2^{\kappa}$. Assume further that C is Matlis cotorsion or Warfield cotorsion or Enochs cotorsion. Then every homomorphism $f: S_{\kappa} \to C$ extends to a homomorphism $g: C_{\kappa} \to C$.

- Conversely, suppose $Ext_R^1(Q, C) = 0$. Then, clearly $Ext_R^1(C_{\kappa}/S_{\kappa}, C) = Ext_R^1(\bigoplus_{2^{\kappa}}Q, C) = \prod_{2^{\kappa}}Ext_R^1(Q, C) = 0$. From the exact sequence $Ext_R^1(C_{\kappa}/S_{\kappa}, C) \to Ext_R^1(C_{\kappa}, C) \to Ext_R^1(S_{\kappa}, C) = 0$, we conclude that $Ext_R^1(C_{\kappa}, C) = 0$.
- **Note**: The above result holds if *C* is a Warfield cotorsion module. The same proof works. It also holds when *C* is Enochs cotorsion, if we further assume that *Q* is a flat *R*-module.
- **Theorem 6:** Suppose C is an R-module with cardinality $\leq 2^{\kappa}$. Assume further that C is Matlis cotorsion or Warfield cotorsion or Enochs cotorsion. Then every homomorphism $f: S_{\kappa} \to C$ extends to a homomorphism $g: C_{\kappa} \to C$.
- **Proof**: If *C* is Matlis cotorsion so that $Ext_R^1(Q, C) = 0$ and so $Ext_R^1(C_{\kappa}/S_{\kappa}, C) = Ext_R^1(\bigoplus_{2^{\kappa}}Q, C) = \prod_{2^{\kappa}}Ext_R^1(Q, C) = 0.$ Substituting this in the equation (*), we get $Hom_R(C_{\kappa}, C) \to Hom_R(S_{\kappa}, C) \stackrel{\delta}{\to} 0$. This means that every homomorphism from S_{κ} to *C* extends to a homomorphism from C_{κ} to *C*.

- Conversely, suppose $Ext_R^1(Q, C) = 0$. Then, clearly $Ext_R^1(C_{\kappa}/S_{\kappa}, C) = Ext_R^1(\bigoplus_{2^{\kappa}}Q, C) = \prod_{2^{\kappa}}Ext_R^1(Q, C) = 0$. From the exact sequence $Ext_R^1(C_{\kappa}/S_{\kappa}, C) \to Ext_R^1(C_{\kappa}, C) \to Ext_R^1(S_{\kappa}, C) = 0$, we conclude that $Ext_R^1(C_{\kappa}, C) = 0$.
- **Note**: The above result holds if *C* is a Warfield cotorsion module. The same proof works. It also holds when *C* is Enochs cotorsion, if we further assume that *Q* is a flat *R*-module.
- **Theorem 6:** Suppose C is an R-module with cardinality $\leq 2^{\kappa}$. Assume further that C is Matlis cotorsion or Warfield cotorsion or Enochs cotorsion. Then every homomorphism $f: S_{\kappa} \to C$ extends to a homomorphism $g: C_{\kappa} \to C$.
- **Proof**: If *C* is Matlis cotorsion so that $Ext_R^1(Q, C) = 0$ and so $Ext_R^1(C_\kappa/S_\kappa, C) = Ext_R^1(\bigoplus_{2^\kappa}Q, C) = \prod_{2^\kappa}Ext_R^1(Q, C) = 0.$ Substituting this in the equation (*), we get $Hom_R(C_\kappa, C) \to Hom_R(S_\kappa, C) \stackrel{\delta}{\to} 0$. This means that every homomorphism from S_κ to *C* extends to a homomorphism from C_κ to *C*.